A Multi-Level Method for the Steady State Solution of Discrete-Time Markov Chains

نویسندگان

  • Claudia Isensee
  • Graham Horton
چکیده

Markov chains are one of the most important kinds of models in Simulation. A fast iterative algorithm for the steady state solution of continuous-time Markov chains (CTMCs) was introduced by Horton and Leutenegger [HL94]. The so-called multi-level algorithm utilizes ideas from algebraic multigrid to provide an efficient alternative to the currently used Gauss-Seidel and successive overrelaxation (SOR) methods. This paper examines the applicability of the algorithm and its ideas to discretetime Markov chains (DTMC). The steady state solution is determined by successively coarsening an initial problem and solving it in parallel on various levels of detail. Since CTMC and DTMC are closely related and stiff problems pose the same difficulties for the iterative solution methods Power (DTMC) and SOR (CTMC) the effect of the multi grid approach is equally good. An adapted algorithm is presented and tested on different chains, that were derived from the ones used in testing the original Multi-Level Algorithm. The experiments show, that the runtime can be greatly reduced when using the Power method and a slightly modified aggregation scheme. When using the GaussSeidel method as smoothing algorithm the performance is even better.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Level Method for the Steady State Solution of Markov Chains

This paper illustrates the current state of development of an algorithm for the steady state solution of continuous-time Markov chains. The so-called multi-level algorithm utilizes ideas from algebraic multigrid to provide an efficient alternative to the currently used Gauss-Seidel and successive overrelaxation methods. The multi-level method has been improved through several iterations, so tha...

متن کامل

Time Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter

In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...

متن کامل

Nasa Contractor Report #191558 a Multi-level Solution Algorithm for Steady-state Markov Chains

A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial diierential equations. Initial results of numerical exper...

متن کامل

ICASE Report #93-81 NASA Contractor Report #191558 A Multi-Level Solution Algorithm for Steady-State Markov Chains

A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial di erential equations. Initial results of numerical exper...

متن کامل

Modeling and Evaluation of Stochastic Discrete-Event Systems with RayLang Formalism

In recent years, formal methods have been used as an important tool for performance evaluation and verification of a wide range of systems. In the view points of engineers and practitioners, however, there are still some major difficulties in using formal methods. In this paper, we introduce a new formal modeling language to fill the gaps between object-oriented programming languages (OOPLs) us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004